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procedures are proposed for synthesizing of optimal controls using the method of extremai aiming in the direction of the gradients 
of approximations of the value functions in problems with terminal and integral discount functionah. The value functions are 
approximated by finite-difference operators for a Hamilton-Jacobi equation, using constructions of sub- and superdifferentials 
of local convex and concave closures. The dependence of the approximation stepsize on the phase space and the time interval 
is investigated. It is shown that the trajectories generated by a control synthesized by the proposed procedures are indeed optimal. 
The possibilities of the computational methods are illustrated by an example: the solution of a bimatrix evolutionary game with 
non-linear dynamics generalizing the classical replicator models. Q 1997 Elsevier Science Ltd. Ail rights reserved. 

It is well known that if a value function is differentiable, it is a classical solution of a Hamilton-Jacobi 
equation. An optimal control procedure may then be constructed as an extremal in the direction of the 
gradients of the value function. If the value function is not smooth, optimal strategies may be constructed 
by the method of extremal displacement to accompanying points of its local extrema [l, 21. Use may 
also be made of the principle of extremal aiming in the direction of quasi-gradients, defined using the 
Yosida-Moreau transformation [3]. These methods require either exact knowledge or a highly accurate 
approximation of the value function. The construction of a value function is a problem in itself, which 
can be solved in the context of the theory of generalized solutions of Hamilton-Jacobi equations 
[4,5]. One method for constructing the value function in that theory uses finite-difference approxima- 
tion schemes [6-111. The finite-difference operators involved use generalized gradients of various types 
[9-111. 

Below we propose an algorithm that combines a finite-difference approximation scheme for construc- 
ting the values of a value function with the method of optimal aiming in the direction of the generalized 
gradients. Interpolations of the extremal values of the control parameters, computed at the mesh points, 
are considered. At the same time, the question of the relationship between the approximation step sizes 
of the time interval and the phase space is considered. Modifications of the approximation schemes 
are proposed for problems with an integral discount functional [ll, 121. 

1. APPROXIMATION SCHEMES IN A TERMINAL PROBLEM 

Consider the Cauchy problem for the Hamilton-Jacobi equation 

aw 
ar+H =O, (r,x)=TxR”, T=(ro,8) 

~((3, x) = a(x), x E R” (l-2) 

Let us assume that this boundary-value problem is associated with a guaranteed-control problem for 
a dynamical system 

f = f(t, x, p, q) = A(r, x) + B(r, x)p + C(r, x)q (1.3) 

teT, xeR”, pePcRP, q=Qc@ 

with terminal payoff functional 

I+( * 1) = 0(x(8)) WV 
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where x is the n-dimensional system vector, p is the control and q is a perturbation. The sets P and Q 
are convex and compact. 

The function H(t, x, s): T x R” x R” + R in equation (1.1) is a Hamiltonian for system (1.3), that is, 
it is related to the dynamics f(t, x, p, q) by the relation 

Mt. x. $1 = (s, AU, xl> + yiib, B(t, x>p) + m$s, CO, x)q) (1.5) 

Assume that the right-hand sidef(t,x,p, q) of system (1.3) satisfies a Lipschitz condition with constant 
L with respect to the variables t and x and conditions for the continuability of solutions. 

We define a compact domain G, E T x R”, in which we will consider Eq. (1.1) and system (1.3), by 
the following invariance condition: if (to, x0) E G, then (t, x0 + (t - to)&) E G, for all t E T, B, = 

is the maximum velocity of the system, defined on a closed set G which satisfies a strong invariance 
condition with respect to the differential inclusion 

i(t) E F(r, x(t)), t E T, x(to) = x0 

F(T,Y)=(fER”: f=f(‘Ly,p,q), PEP, qEQ}, (7,y)~TxR” 

By virtue of the above conditions imposed on the right-hand side of system (1.3), the Hamiltonian 
(t,x, s) -+ H&x, s): G,xR” + R satisfies a Lipschitz condition and the condition of positive homogeneity 
with respect to the variable s. 

A fundamental role in solving problem (1.3), (1.4) is assigned to the value function (t, x) -+ w(t,x): 
G, x R” + R, which is defined for an initial position (to, x0), positional strategies U = U(t, x) and the 
corresponding trajectories x( . ) E X(to, x0, U) by the formula 

w(ts, x0) = min 
u xc.k~&).“,Q(x(B)) 

(1.7) 

Note that by the alternative theorem [l, 21 the function (1.7) has a saddle point 

w(to. x0) = min 
v yi,.~~Lq),v,“(y(e)~ 

where y( . ) E Y(t0, x0, v) are the trajectories generated by a perturbation V = V(t, x) from the initial 
position (to, x0). 

We recall that the value function is a generalized (minimax or viscosity) solution of the Hamilton- 
Jacobi equation (1.1); for the theory of such solutions, see [4,5]. 

2. OPTIMAL CONTROL PROCEDURES 
C.~ 

To construct optimal control procedures we will have to approximate the value function. We define 
a finite-difference operator CU, which will be interpreted as a minimax construction 

CLl(t, A, u)(x) = min fin IAW, x, s) + G(y) - (s, y - x)) (t. X) E G, (2.1) 
YsO(x.wseD*G(y) 

on local concave closures y + G(y): o( x, r, A) + R for a function y + u(v) approximating the value 
function y + w(t + A, y) in the interval (t, t + A). The set D*G@) is the superdifferential of the function 
G at the pointy 

D*G(y) = {s E R”: G(y’) - G(y) s (s, 7 - y), 7 E 8(x, rA)}, y E a(x, KA) 

The sets 8(x, rA), 6(x, KA) are closed neighbourhoods of the point x of radii rA, KA, r > K. 
Suppose 
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l?={to<tl <...<?,=8}, A=ti+l-ti, i=O,l,...,N-1 

is an arbitrary partition of the time interval T. We will now analyse the approximation scheme with the 
finite-difference operator CU of (2.1) for the partition I of T 

u@, x) = o(x) (2.2) 

u(t;v X) = CU(ti, A, u(ti+lt *))(x) (2.3) 
(t;.~),(ti+l,~)~G,, i=O,...,N-l 

Let us assume that, in the scheme (2.2), (2.3) with operator CU of (2.1), we have constructed an 
approximation y for the value function w of (1.7) at all points (t, x) E G, t E Q. We will define the value 
of the positional strategy U* = U*(t, x) according to the principle of extremal aiming in the direction 
of generalized gradients-the subgradients s* of the local concave closure G of u 

u’ = U’(t, n)=arg$pn{(s’. B(r, x)p)) (24 

S* =~‘(f,~.y’)=argl~~~;,(lYl(r,x,s)+G(y*)-(s,y’ -x)1 (2.5) 

Y’ = y*(r, x) = arg min min‘ (M(t,x,s)+G(y)-(s,y-x)) 
).Wr.KA)ssD*G(y) 

(2.6) 

We will establish relations for the values 

u(t, x), u(t + A, ~0, x, A, II’, 4)) 

of the approximation function u on an element y( ) of the Euler polygon 

y(r, x, A, CJ’, q) = x + A(A(r, x)+ B(r, x)U* + C(r, x)q), q E Q 

Lemma 2.1. The control U* of (2.4) satisfies the inequality 

r$t;u(r+A, y(r, x, A, II’, 4))s u(r, x) (2.7) 

proof. Consider the function G* conjugate to the local concave closurey + G(y): 0(x, KA) + R. Since G and 
G* are concave functions, the following chain of inequalities is true for any q E Q 

u(t+A, y(t,x, A, U’, q)) s G(y(r, x, A, U’, q)) 4 ~~%G(y(t,x, A, U’, q))= 

= yg;;$ I(s, y(r, x, A, U’, q)) -G’(s)} = min min ((s,x)+A((~,A(I,x))+ 
YEW. ‘Ws.o*c(y) 

+(s, BO, x)U* >+~~a$,. CO, x)q)l-(s, Y)-G(Y)) 

Using the definition of the positional control U* (2.4)-(2.6), we obtain inequality (2.7). 

(2.8) 

Having inequality (2.7) for the function u on an element y( .) of the Euler polygon, we can estimate 
the quality of the entire trajectory x( .) generated by the strategy U*. 

Fix an initial position (to, x0). Consider the Euler polygon 

XC*) = (.a to, x0, U*,q(.)), rErnT1 

generated by the strategy U* of (2.4) and an arbitrary perturbation t + q(r) 

X(ti+,)=~(ti +A)=X(ti)+A(A(ti,X(fi))+B(ti,X(ti))U* +C(ti,X(ti))q(ti))v 

ri9 ri+l E rv x00 I= x0 

(2.9) 

Inequality (2.7) implies the following proposition for the trajectoryx( .) of (2.9). 
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Theorem 2.1. For any partitions r, initial positions (to, xa) and arbitrary perturbations t + q(r), the 
trajectoryx( .) generated by the strategy U* of (2.4) satisfies the estimate 

a(x(W d ~00, x0) + Ue - to )A (2.10) 

Since the approximation scheme (2.2), (2.3) g enerating the function u converges to the value function 
w and a convergence estimate is given by the quantity CA”* [8], inequality (2.10) implies the inequality 

o(x(~))sw(~~,x~)+L(~-~~)A+CA~ (2.11) 

Fixing an arbitrary number E > 0, one can indicate what stepsize A of the partition r will guarantee 
the validity of the estimate 

0(x(e)) s w(tos x0) + E (2.12) 

3. APPROXIMATION SCHEMES IN A DIFFERENTIAL 
GAME WITH DISCOUNT 

Let us consider a steady control system over the infinite time interval [0, +-) 

i = f(x, p, q) = A(x) + B(x)p + C(x)q 
(3.1) 

XE R”, p~pcR~, qEQcRq 

Let x( .) = {x(t): t E [0, +-)I be an arbitrary trajectory of system (3.1). We will estimate the quality 
of the trajectory by an integral functional with discount coefficient 

J(x(.L P(.), 4C.N = &) +O” ei7g(x(Q, p(r), q(r))& A > 0 (3.2) 

The functions f( . ), g( . ) are continuous jointly in all the variables, satisfy Lipschitz conditions with 
respect to x and are bounded by a constant K. 

The stationary value function w”: Rn + R in the game (3.1), (3.2) satisfies the equation 

=0, XER” (3.3) 

at its points of differentiability. The function H(x, s): R” x R” + R in Eq. (3.3) is a Hamiltonian for 
system (3.1) and is related to the dynamicsf(x, p, q) by 

fox* s) = 2; ye? Ns* f(x* PI 4)) + g(x, p. 4)) = 

= (~9 4x1) + y.2 y. t(s, WX)P + W)q) + gk P. qN (3.4) 

Let us carry over the constructions of the approximation scheme (2.2), (2.3) to the stationary function 
w”. The values of a function u;(x) approximating the solution w’(x) are defined by the following iterative 
procedure 

&x)=0, XE R” (3.5) 

u~(x)=CUS(&‘)(x), i=O,...,m, m=B/A (3.6) 

CUS= min min 
y~Wx.KAhD*(G(y)) 

W(x, eeMs)+GA(y)-(e% Y-X)) 

wher_e GA(v) = emMG(y), D*G(y) is the superdifferential of the local concave closure G@) for u;-‘(v), 
y E 0(x, KA). 

Theorem 3.1. A function 8 = e(x) exists such that the approximation ur( .) defined by (3.5) and (3.6) 
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converges uniformly to a function w”: R” + R-a generalized solution of Eq. (3.3)-as A + 0. Under 
these conditions, the following estimate holds for some z E [to, +-) 

The numbers C and y E (0,l) are determined by the condition of Holder continuity [12]. 

proof. We will reduce the steady system with integral payoff functional to a system of the form (1.3), 
(1.4), by adding to system (3.1) an (n + 1)th equation which gives the functional (3.2) in differential 
form 

(3.8) 

6 = (x, z) E R /I+1 , rEIO,+~l, PEP, qeQ, X>O 

The payoff functional is defined by 

J’(((-)) = &n z(e) (3.9) 

where z(O) is the value of the (n + 1)th coordinate of the motion c( .) of system (3.8) at time 8. Note 
that when z. = 0 the functionals J of (3.2) and J* of (3.9) have the same values. 

Let us consider the game (3.8), (3.9) 
RN+l 

in classes of positional strategies of player I (f, 5) + u(t, 5): 
+ P and counter-strategies (t, &p) + V(t, 5,~): R”+i x P + Q of player II. The sets of strategies 

U and Vwill be denoted by U and V, respectively. Basing ourselves on well-known results [1,2], we can 
show that the value of the game (3.8) (3.9) is 

(3.10) 

The supremum over ci(. ) and infimum over c2(. ) are calculated for sets Xi@, 50, U), X,(t,, to, v) 
whose elements are the motions cl(.), 52(.) of system (3.8) generated by a strategy U or counter-strategy 
V. 

We know [12] that the relation between the value functions w’(x) and i&t, 5) is given by 

w’(t.Q= w~(~,x,z)=z+~-“‘w~(x), wO(x) = wt (0, x, 0) (3.11) 

XE R”, z E R, r E [O, +=+) 
Consider a time interval T = [0, 01. Let w$: T x R”+l + R1 be the value function in a game of finite 

duration e(t3 E [to, +-I) with dynamics (3.8) and payoff functional 

4Xx)) = z(e) (3.12) 

The value functions w5, we5 satisfy the estimate 

supllwC(r.~)-w,C(r,~)lldIM-*~-XB, eE[o,+=j (3.13) 

The function w$ is the value of the game (3.8), (3.12) with fixed finishing time. We may therefore 
approximate it using a retrograde procedure with finite-difference operator CU as in (2.1). Divide the 
time T into m equal parts of length A > 0, so that 8 = mA. At time 8 the approximation u$(t, .) is 
defined by the formula 



$58 N. V Mel’nikova and A. M. Taras’yev 

&%<)=z, (&&ER”+‘, ZERI (3.14) 

Let us assume now that the approximation has already been constructed for time (i + l)A, say 
~&(i+l)A, .) (i = 0, . . . , rn - 1). Define the approximation ue5(iA, .) at time iA by the formula 

&iA,O= max 
l&?&WdFG(rl) 

{AH(iA,c,f)+G(rl)-(f,q-c)}, PER”+‘, r>2K (3.15) 

The function r~ + G(n): o(&, rA) + R is the local concave closure of the function ues(iA, 5). The set 
D*G(TJ) is the superdifferential of G(rl) at the point r(. The function H(t, k,/) = R”+l x F+’ -+ R in 
Eq. (3.15) is the Hamiltonian of the extended system (3.8) and is related to the dynamics k(t, 5, p, q) 
by 

(3.16) 

By (3.11), the value function, hence also its local convex closure, are linear with respect to the 
(n + 1)th variable z. Therefore the vector I has the structure 1 = (s, I) and the Hamiltonian is defined 
by 

H(h 5.0 = y-n; y$ I(& Rx, p. 4)) + e-bg(x, p. q)} = 

= (~9 4x1) + 72 yg Ns, Nx)p + C(x)q) + e+(x, p, q)} 

Comparing the formulae for the approximations u&t, .) of (3.14), (3.15) and UT of (3.5), (3.6), we 
obtain 

u,S(t, 5) = 2 + e-“u?(x) (3.17) 

It is well known [7,8] that an approximation scheme over a finite time interval T ensures convergence, 
with the estimate 

supllw,S(O, x, O)-$(x)11< tii5.c e(L-‘)‘dz (3.18) 

Taking (3.11) (3.17) and (3.13), (3.18) into consideration, we obtain the inequality 

SU~IJW~(X)-U~(O,X)(J~ AXL~e’L-‘JTh+K;h-‘e-” (3.19) 

Minimizing the right-hand side of (3.19) with respect to 8, we obtain the desired relationship 
(3.7). 

4. SYNTHESIS OF STEADY STRATEGIES 

Let us assume that the function urn0 has been constructed using the approximation scheme (3.5), (3.6). 
We define the value of the positional control U* = U*(X) at a point x E R” as follows: 

II’ = U’(x) = a@ I$ Iyy I(s’, f(x. p, 4)) + g(x, p, 4)) = 

= wP$ I(s’. NX)P) + YGa$ <s* 9 C(x)q) + g(x, p, q)}) 

s* =S*(X,y*)=arg s.D?~y,,~M(x’ e -“s)+GA(y*)-(e-M~, y’--x)} 

y* = y*(x) = arg min min {AFZ(x,e 
yeOWWsoD’(G(y)) 

-Mu) + G,(y) - (emMs, y - x)) 

(4.1) 

(4.4 

(4.3) 
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For points 

6=(X,z)r rlO.6, A, U',q)=(y(x,A,U', q), z&x, A&q)) 

y(x,A,U', q)=x+ A(A(x)+B(x)U'+ C(x)q) 

~0, x, A, U’. q)) = z + At+‘g(x, I/*, q), q E Q 

we will analyse the relation between the values G(x) and U~(JJ(X, A, U*, q)) of the approximation function 
u; 

Lemma 4.1. The control U* of (4.1) satisfies the inequality 

Tt;(z(r, x, A, U’, q)+e-““+*‘u~(y(r, x, A, U’, q)) 4 z+e-&u,“(x) (4.4) 

Proof. Consider the function G* conjugate to the local concave closure 11 + G(q): 6(& rA) + R. Since G and 
G* are concave functions, we have the following chain of inequalities for any q E Q 

uf (I+ A, qtr. 5. A, U* . q)) c GOW. 5. A, U’, 4)) 4 y$Xq(r, 5, A, U’ , 4)) = 

=max inf ((1,~)-G’}=max _Fin 
qeQ leiP+’ 

tin 
qsQ @‘(&2KWdI*G(q) 

l(L tl)- is, I(& tl> - WI))} (4.5) 

It follows from property (3.11) of the value function of the extended system (3.8) that its local concave closure 
G satisfies the relation 

G(q(r, 5, A, V’, q))=z(t, x. A, U*, q)+e-‘(‘+*)G(y(t, x, A, U', q)) 

and the vector 1 has the structure 

1s (,-i(r+*)s, 1) 

Hence 

+f? 
I 

-‘(‘+*)s, B(x)U* + e- 
>( 

k(t+*)s. C(x)q 
0 

+z+Ae-h’g(x, u*, q)) 

Note that for 1 E D*G(rQ the conjugate function G*(Q) satisfies the equality 

i$+,{(l, ~)-G*(~)}=(e-l(r*a)s, y)-e-‘(‘+*)G(y) 

Using the Minimax theorem and Eqs (4.5)-(4.7), we obtain the inequality 

u~O+A. rl(r. 5, A. V’, q))“z+emb 
$$A) ..D~&),((iMs* ’ - ‘) + 

+GA(y)+A((emMs, A(x))+(eeMa. B(x)u*)+ 

(4.6) 

(4.7) 

+max e 
I 

-% C(x)q 
> 

+&a u’. 4) (4.8) 
4sQ 

‘I&king the definition of the positional control lJ* (4.1)-(4.3) into consideration, we obtain inequality (4.4). 

Let us estimate the quality of the entire trajectoryx( .) generated by the strategy U* of (4.1) and an 
arbitrary perturbation o + q(z) 
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4-l = {X0, x0, II’, q(.N, t E rfuo, +-I} 
x(f~+,)=x(ti+A)=x(t;)+A(A(X(ri))+B(x(ti))U*+C(x(ti))q(ti)), 

ri, fi+l Er, X(0)=x0 
(4.9) 

Theorem 4.1. For any partitions r, initial positionsxo and arbitrary perturbations z + q(T), the trajectory 
x( -) of (4.9) generated by the strategy U* defined by (4.1) satisfies the estimate 

J(x(.), II’, q(a)) < w”(xo)+ CAY’* (4.10) 

Fixing an arbitrary number E > 0, we can find a step size A for the partition I such that 

J(x(*), u’s q(*)) < wO(xo)+E 

The proof of the theorem is analogous to the proofs of Theorems 2.1 and 3.1. 

(4.11) 

5. THE RELATION BETWEEN STEP SIZES OF THE 
FINITE-DIFFERENCE APPROXIMATION SCHEME 

In reality, the approximation procedure (2.2), (2.3) cannot be implemented at every point (r, x) E 
G, r E r, but only at mesh points of a grid GR(r). Let us assume that the grid GR(r), r E r, is uniform 
and rectangular 

GR(r) = (x E R”:(r, x) E G,, x = C(m,e,+...+m,e,)yA) 

mi=O, fl, f2, . . . . i=l, . . . . n 

q=(ef, . . . . el), ej=l, e{ =0, i=l, . . . . n, i#i 

(5.1) 

The values of the operator CU will be defined only at mesh points yj of GR(r) and will then be 
determined by linear interpolation relative to a given simplicial partition 0 

CW, A, W)(Y) = i aQ-4, A, w)(yj) 
j=O 

Y=xajYj, yj EGR(r), Qj 30, j=O, . . . . n, ECaj ~1 

The numbers . 
% 

= q(Q) and mesh points yi = y(Q) depend on the partition R. 
Let us consi er an approximation scheme wit 4 finite-difference operator CU of (5.2) for a partition 

r of the interval Twith step size A 

u*(e9 Y)=MY)=C,ajU(yj), Y=~ajYj 

Caj=l, aj=aj(R)aO, Yj=Yj(“>EGR(B), j=O, . . . . n 
4h xl = Wt. ri+, -r, u(ri+,, -j)(x) 

tE[ti, ti+l), i=O, . . . . N-l 

We first define the control U” = P(r, x) at mesh points x E GR(r), r E r, using the operator CU(r, A, 
u(r+A), e))(x) of (2.4)-(2.6). A strategy V(r, y) is defined at the pointy by piecewise-constant interpolation 
of the values {v+(r, x),x E GR(r), r E r} of (2.4), computed at the nearest mesh points x of the grid 
GWO 

Wt. y) = 0, x), x =x(y) = ~gLEki;,;IY-Zll (5.3) 

Consider the Euler polygon 
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Y(*)= (Y(h to, y,, UC, q), t E r) 

generated by the strategy u” of (5.3) and an arbitrary perturbation z + q(r) 

Y(ri+l) = Y(ri + A) = Y(ri) + A(A(ti, Y(ti 1) + Wriv Y(ri )W” + 
+Qrj* Y(rj))q(rj))9 4. ti+l E r, Y(ro)=Yo 

561 

(5.4) 

For the trajectoryy( .) of (5.4), we define associated points X-(ti), x+(ri+J by the relations 

(5.5) 

x+(ri+,)=x-(ri)+A(A(ri, x-(ti))+B(ti, x-(ti))V +C(ti, x-(ti))q(ti)). ti, ti+r or (5.6) 

Lemma 5.1. The trajectoryy( .) of (5.4) and associated poimx&),.x+(ri+l) of (5.5), (5.6) satisfy the 
estimate 

Ily(ri+l)-X+(ri+l)llC (l+ZA)lly(ri)-X-(ri)ll (5.7) 

Lemma 5.2. Let the parameter y of the grid GR(r), r E r, be infinitesimal relative to the partition 
step size A 

Y = e(A), tzo&(A) = 0 

for example 

Y = pAa, a>o, p>o (5-S) 

that is, the step size h of GA(r), which is a grid on the phase variables x (i = 1, . . . , n), is an 
infinitesimal 

h = PA’* (5.9 

small to a higher order than the step size A of the partition r of the time interval T. 
Then 

U(ri, Y(4)) 3 U(ri+lh Y&+1 1) - L 
?lH 
32 + LA)pAaA (5.10) 

proof. It follows from the Lipschitz continuity of u and relations (2.7) and (5.7) that 

U(tj* y(ti))>U(tj, X-(ti))-~llY(ri)-X-(ri)ll>U(~i+lt X+(lj+l))- &llY(rj)-x-(tj III> 

> U(ti+~,y(tj+~))-4,(2+~)llY(ri)-x~(ri)ll 

It follows from (5.8) that 

The last two inequalities imply (5.10). 

Ily(ti)-X-(ti)llC 
3 2pAaA (5.11) 

Using (5.10), one can prove the following proposition for a trajectoryy( .) generated by a positional 
control (5.3). 

Theorem 5.1. For any partitions r, grids GR(r), r E f’with parameters (5.8) of a high order of smallness, 
initial positions (to, yo) and arbitrary perturbations T + q(T), the trajectory y( . ) of (5.4) generated by 
a strategy u with piecewise-constant interpolation satisfies the estimate 

MY@)) s 4ro, y,,) + W) (5.12) 
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CPU) = (0 - r. )&,a 
?lK 
-92+ LA)pA’, Fzecp(A) = 0 

and consequently 

o(yW)< ~00, yo)+ C*A’ +cp(A) 

Fixing an arbitrary number E > 0, one can find a step size of the partition r such that 

(5.13) 

a(yW) G woo 9 Yo I+ E (5.14) 

Remark 5.1. There are other possible piecewise-constant interpolations of the strategy U* = U*(t, X) of (2.4). 
For example, the strategy u(t, y) may be completed in accordance with a simplicial partition R by the values of 
the controls V*(t, n) computed at the mesh pointsx of CR(t) with least values of the function u 

U’(t, y)=U*(f, X), X=X(Y)=~g~nu(Yj) 
Yi 

yj E GR(f)+ Cajyj = Y, CUj=l, UjaO, Uj=Uj(R) 

In that case, estimates (5.10) and (5.13) must be rewritten in the form 

dri 9 Y(‘i )) a u(ri+] 9 y(ri+l)) - &A’ (1 + m)W’A 

(5.15) 

(5.16) 

Note that analogous results may be obtained from the trajectoryy( 
(3.1). 

(5.17) 

) in a steady problem with discount 

Theorem 5.2. For any partitions r, grids GR(r), r E r, with parameters (5.8) of a high order of smallness, 
initial positions y. and arbitrary perturbations ‘c + q(T), the trajectory y( . ) generated by a strategy Cp 
of (5.3) with piecewise-constant interpolation satisfies the estimate 

J(y(-), UC. q(.)) c w”(yo)+C(Ax + R(A)A”)L’(L+‘) (5.18) 

R(A) 
2 

=2p(2+3LA) 

Fixing an arbitrary number E > 0, one can find a step size A for l7 such that 

J(Y(.)* UC, q(.))< wO(Yo)+& (5.19) 

Proof. We again turn to the approximation function u$ of the extended system (3.8). Under the 
assumptions of the lemma, the following inequality holds for u$ and the trajectory rl(. ) = (y( . ), z( )) 

4(fi, M4))>4(fi+lv Wi+t))-G 

nx 1 (2 + 3 LA&A’+’ 

where the Lipschitz constant for the approximation function is defined by 

L; =- = ( 
L-h 

,(me _ 1) 

Then the following inequality holds on the whole trajectory TJ( .) 

ui(ro. q(r,)) > J,(e)- R(A)A’%(e’L-“e - 1) 

Using the same technique as in the proof of Theorem 2.1, we obtain an estimate 
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J(y(*)) < w”(yo) + $(e, A) 

If L - h > 0, the function $(0, A) becomes infinitely small as A + 0,8 + m. 
Otherwise, we replace $(6, A) by a larger function 

I$@, A)=?,- u +(d: + R(A)A“‘)+(L-‘)e -1) 

The minimum point of $(e) as a function of 8 is 

1 
I/( L+l) 

(? = 
2K(L-h) 

L(L-A+l)(d4 +R(A)Aa) 
(5.20) 

This relation determines the form of the second term in Theorem 5.2. 

6. COMPUTATIONAL EXPERIMENTS 

In biological processes [U], the evolution of the interaction of two populations develops in accordance with the 
accumulation of experience and repeated situations, where each participant acts in keeping with one of two 
behaviour modes that are possible for its population. Let x (0 d x < 1) be the frequency of those individuals in 
the first population which, at a given instant of time, have adopted the first behaviour mode (strategy), so that the 
frequency of those adopting the second mode is 1 --x. The parameters y and 1 - y have a similar interpretation 
for the second population. Let us assume that the interests of the populations are given by a payoff matrix 

The average payoffs of the coalition are defined by the functions 

The process is simulated by a replicator dynamics [13] 

i=-dl-x)(C,,y-al), j=y(1-y)(cbX-p2) (6.1) 

in which the rates of change of the groups employing the different strategies in one population are linearly related 
to the population payoffs , , 

=(C.y-a,)=!$ =(cbx-&)= (6.4 

An analysis of an arbitrary evolutionary system with smooth dynamics, including the replicator dynamics (6.1), 
may be found in [14]. Here we propose to investigate a dynamical game formulation in which the controlling 
strategies may be discontinuous functions of the position. 

Let us assume that the rates of changep and q of the population structure are the control parameters 

X=x(1-x)p, j=y(l-y)q 

and thatp and q obey constraints related to the replicator dynamics (6.1) 

PEP. P=[min(O, Cal-a,, max(O, Cu)-a,] 

(6.3) 

qEQ* Q=[mW, cb}-p29 max(0, Ch)-&I 

Consider the problem of constructing optimal guaranteeing strategies in a non-autonomous game, as weI1 as 
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the Nash equilibrium trajectory generated by those strategies. 
We define the payoff of each coalition by an integral functional with discount coefficient h. This functional may 

be considered as a global payoff over the infinite time interval [0, +-I 

Ji = +j+ g&w, y(r))& i= 1. 2 (6.4) 
0 

To construct optimal controls of the game just formulated, we must consider two guaranteed problems of the 
same type, for the functionals J1 and J2 [15]. Let us consider, say, the first such problem. The value function (x, y) 
+ wr(x, y) is a solution of the Hamilton-Jacobi equation 

awl my1 
-hwt(x, y)+gt(x. y)+x(l-x)max-p+y(l-y)min-q=O 

pep ax qEQ ;ty 

An approximation scheme to solve this equation is defined as follows. 
Consider a time interval T and a partition I = [to = 0 c tl < . . . < t,,, = O] of stepsize A. We define the 

approximation function W by an iterative procedure, as follows. Set W(T, x, y) = 0. Suppose that at some t + A 
we have already defined W(t + A, x, y). At time t we define W(t, x, y) by 

w(t. x, y>=~Ey ~j;(&l(x. y)+(l-M)W(r+A. x+A.x(l-x)~, y+AyY(l-y)q)I 

At t = 0 we obtain an approximation W(0, x, y) for the solution wl(x, y). 
In parallel with the computation of the value function, we construct a maximizing strategy u” for the first coalition. 

The structure of the strategy is shown in Fig. 1. The square of the phase state is divided into three regions. In 
the first region, above the curve Lr, the strategy u” takes its extreme value u” = C, - al = 8. This means that for 
maximum success of the population, members of the population must be directed at a maximum rate to the first 
behaviour mode. In the third region, beneath the curve Lz, the value of u” takes the other extreme value u” = - 
a1 = -4, and members are directed to the second mode. The region numbered 2, between the curves L1 and L2, 
represents an intermediate layer, in which the values of the control do not attain their extreme values. 

An approximation of the value function w&y) and a maximizing strategy of the second coalition V’ in the game 
with payoff matrix B are constructed in the same way. 

Figure 2 shows the intermediate layers S, for the strategy u’, Su for the strategy v’, and an equilibrium trajectory 
(the curve with arrows) generated by strategies u’, Y’ for the initial position IP = (0.1,0.95). This trajectory is the 
main construction of the dynamical Nash equilibrium proposed in [15]. The results of these computational 
experiments show that the equilibrium trajectories for different initial positions converge to the stationary point 
DE = (0.729,0.4%) at which the rates of the controlled system (6.3) vanish: x = 0, j, = 0. 

Note that the trajectories of classical models with replicator dynamics (6.1) converge to the static Nash equilibrium 
point NE = (0.67,0.33) or circulate in its neighbourhood. The value of the payoff functions gi(x, y) (i = 1, 2) at 
the point DE is better (strictly greater) than at the static equilibrium point NE. Consequently, the values of the 
payoff functionals Ji (i = 1, 2) on trajectories converging to a dynamical equilibrium point are better than on 
trajectories converging to a static equilibrium point. 

Fig. 1. Fig. 2. 
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